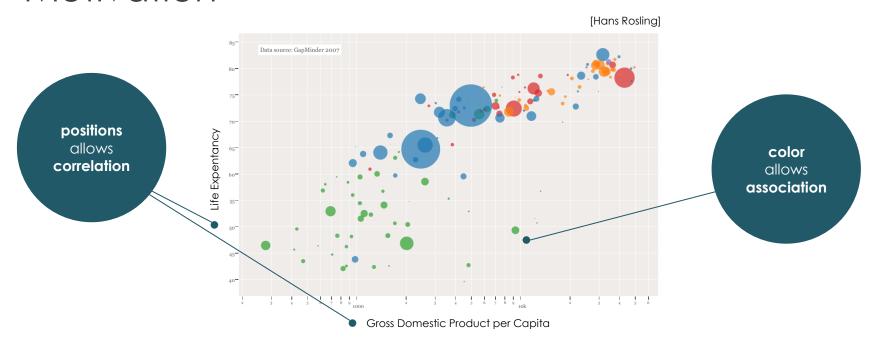


Identifying the Relationships
Between the Visualization
Context and Representation
Components to Enable
Recommendations for
Designing New Visualizations

21st International Conference Information Visualisation, IV2017 London South Bank University, London, UK 11 – 14 July 2017

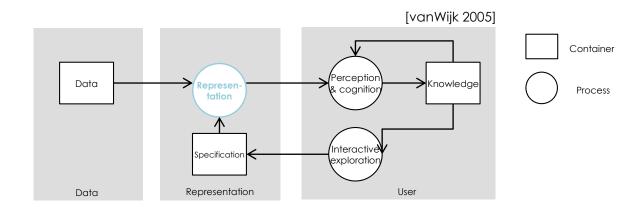
Alma CANTU
Olivier GRISVARD
Thierry DUVAL
Gilles COPPIN



THALES

Motivation

- What makes existing representations solve challenges?
- Does specific components of a representation solve specific visualization challenges aspects?
- How to understand and describe the relationships between representations components and challenge aspects?


Objectives

- Describe the challenge aspects and the representation components in a manner that allows the characterization of existing representations
- Characterize existing representation and try to understand the relationships between the challenges and the representation components
- Use the extracted relationship to build representations and to highlight unsolved challenges

CHALLENGE ASPECTS

From the visualization process

- What impacts the visualization process, defines the challenges that the representations handle
- The existing visualization process definitions permit to extract the following impacting factors
 - Data type
 - Context of use
 - User's need (tasks)
- A representation challenge can be describe by a data type, a user need and a context of use

Data type characterization

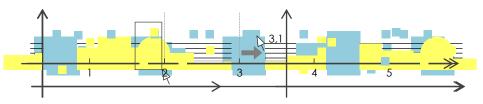
- Data volume [Jankun-Kelly et al. 2014]
 - Low volume
 - Intermediate volume
 - High volume

- Structural organization [Hascoët and Beaudouin-Lafon 2001]
 - Unstructured
 - Un-oriented relation
 - Oriented relation

- Attributes cardinality [Shneiderman 1996]
 - 1-dimentional
 - 2-dimentional
 - 3-dimensional
 - **Multidimensional**

- Attribute structural properties [Bertin 1967]
 - Nominal
 - Ordinal
 - Quantitative

- Attribute nature [Purchase et al. 2008]
 - Characteristic
 - Referential

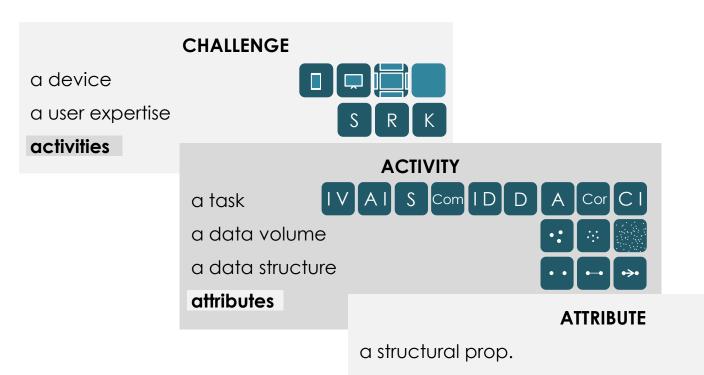

Tasks


	Identify			Retrieve value			
	Categorize			Filter		Identify Value	IV
Zoom	Locate	Identify data characteristics		Sort		Access Information	ΑI
Extract	Rank			Determine range		Sort	S
Filter Detail-on-demand	Compare			Characterize distibution		Compare	Com
	Distribute	Rank based on some order		Find extremum	Identify Distribution	ID	
	Distinguish	Compare to find similarities and differences		Find anomalies		Distinguish	D
Overview	Cluster	Distinguish regions of different characteristics		Cluster		Associate	A
History	Associate	Associate into relation		Correlate		Correlate	Cor
Relate	Correlate	Correlate by classifying		Compute derived value		Create information	CI
[Shneiderman 1996]	[Keller 1993]	[Purchase 2008]		[Amar 2005]		Our taxonomy	

Tasks

- Identify value
- Access information
- Sort
- Compare
- Distinguish
- Identify distribution
- Associate
- Correlate
- Create information

Context of use


- Platform [Sundén et al. 2007]
 - Mobile display
 - Standard screen
 - Large-scale display
 - Immersive device
- User expertise [Rasmussen 1983]
 - Skill
 - Rule
 - Knowledge

Synthesis

a nature

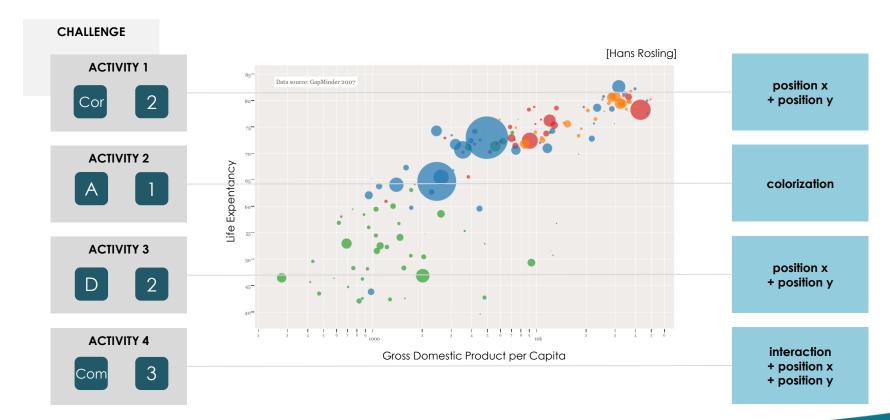
REPRESENTATION COMPONENTS

Representation components

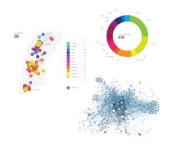
- Data transformation
 - Filtering
 - Clustering
 - Density computation
- Visual mapping
 - Visual variables
 - Position
 - Color
 - Size
 - •
 - Linking
- View transformation
 - Focus + Context
 - Navigation
 - Multi-view

Shape

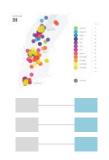
Size


• • •

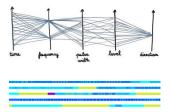
[Bertin 1967, Wilkinson 1999, Cockburn et al. 2009, etc.]


RELATIONSHIP BETWEEN CHALLENGE AND REPRESENTATION

Relationship extraction



Toward a recommendation tool



Extraction of relationships

Construction of a knowledge repository

Manual use of the repository on new challenges

Conclusion and perspectives

Conclusion

- Definition of a visualization context characterization
 - Data type
 - User need
 - Context of use
- Proposition of a methodology to extract existing relation between representation components and challenge aspects
 - Analysis of existing representations
 - Use of theoretic contribution of representation components

Perspectives

- Implementation of a recommendation tool
 - Express relationships in prolog predicates
- Evaluation of the given recommendation

